skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ornob, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Discovering novel molecules with targeted properties remains a formidable challenge in materials science, often likened to finding a needle in a haystack. Traditional experimental approaches are slow, costly, and inefficient. In this study, we present an inverse design framework based on a molecular graph conditional variational autoencoder (CVAE) that enables the generation of new molecules with user-specified optical properties, particularly molar extinction coefficient ($$\varepsilon$$). Our model encodes molecular graphs, derived from SMILES strings, into a structured latent space, and then decodes them into valid molecular structures conditioned on a target $$\varepsilon$$ value. Trained on a curated dataset of known molecules with corresponding extinction coefficients, the CVAE learns to generate chemically valid structures, as verified by RDKit. Subsequent Density Functional Theory (DFT) simulations confirm that many of the generated molecules exhibit the electronic structures similar to those molecules with desired $$\varepsilon$$ values. We have also verified the $$\varepsilon$$ values of the generated molecules using a graph neural network (GNN) and the synthesizability of those molecules using an open-source module named ASKCOS. This approach demonstrates the potential of CVAEs to accelerate molecular discovery by enabling user-guided, property-driven molecule generation -- offering a scalable, data-driven alternative to traditional trial-and-error synthesis. 
    more » « less
    Free, publicly-accessible full text available September 15, 2026